Correlation Between Liver Cirrhosis and Risk of Cardiac Arrhythmias

VERONICA CALBOREAN¹, SILVIA ALINA MISCOCI²*, OCTAVIAN ISTRATOAIE¹, OANA GALCEAVA ³, DRAGOS OVIDIU ALEXANDRU⁴, MARIA MANUELA GUTA⁵, VICTOR GHEORMAN⁶, VLAD PADUREANU², CATALIN MIRCEA FORTOFOIU⁷, ANDA LORENA DIJMARESCU⁸, DAN IONUT GHEONEA⁹

¹University of Medicine and Pharmacy of Craiova, Cardiology Department, County Hospital Craiova, 1 Tabaci Str., 200642, Craiova, Romania

²University of Medicine and Pharmacy of Craiova, Internal Medicine Department, County Hospital of Craiova, 1 Tabaci Str., 200642, Craiova, Romania

³University of Medicine and Pharmacy of Craiova, Neurology Department, Neuropsychiatry Hospital of Craiova, 99 Calea Bucuresti Str., 200473, Craiova, Romania

⁴University of Medicine and Pharmacy of Craiova, Department of Medical Informatics and Biostatistics, 66 1 Mai Blvd, 200638, Craiova, Romania

⁵University of Medicine and Pharmacy of Craiova, Department of Otorhinolaryngology, 1 Tabaci Str., 200642 ,Craiova Romania ⁶University of Medicine and Pharmacy of Craiova, Psychiatry Department, Neuropsychiatry Hospital of Craiova, 99 Calea Bucuresti Str., 200473, Craiova, Romania

⁷University of Medicine and Pharmacy of Craiova, Internal Medicine Department, Filantropia Hospital of Craiova, 1 Filantropiei Str., 200143, Craiova, Romania

⁸University of Medicine and Pharmacy of Craiova, Obstetrics-Gynecology Department, Filantropia Hospital of Craiova, 1 Filantropiei Str., 200143, Craiova, Romania

⁹University of Medicine and Pharmacy of Craiova, Gastroenterology Department, County Hospital of Craiova, 1 Tabaci Str., 200642, Craiova, Romania

There are few studies analyzing the correlation between liver cirrhosis and cardiac arrhythmias. Still, factors triggering cardiac arrhythmias occur in many instances in liver cirrhosis. We studied a cohort with patientsdiagnosed with liver cirrhosis hospitalized to Cardiology Department, to the County Hospital of Craiova, between January 2017 and January 2018. We wanted to study the frequency of cardiac arrhythmias at the patients diagnosed with liver cirrhosis and also to evaluate several associated factors. The frequency of cardiac arrhythmias in the presence of risk factors was analysed using x² test and statistical models. We analized multiple variable including demographics and clinical and biochemical characteristics, frequency of type of arrhythmias and evaluation of the associated factors like diabetes mellitus, hypertension, hypercholesterolemia, hypertriglyceridemia, hyper/hypokalemia and hyper/hyponatremia. From our group, after exclusion criteria, we have a total of 34 patients with alcoholic liver cirrhosis, 37 patients with chronic HCV infection and 36 patients with HBV infection. From 34 patients with alcoholic liver cirrhosis, 23 patients presented atrial fibrillation(67.65%), from 37 patients with chronic HCV infection 21 were diagnosed with atrial fibrillation (56.76%) and from the patients with HBV infection 19 patients were known with atrial fibrillation (52.78%). We have encounter atrial flutter at 2 patients (5.56%) with chronic HBV infection. Atrial extrasystole was found at 7 patients with chronic HBV infection (19.44%), 4 patients with chronic HCV infection (10.81%) and 1 patients with alcoholic liver cirrhosis (2.94%). Ventricular extrasystole was found at 12 patients with chronic HBV infection (33.33%), 3 patients with chronic HCV infection (8.11%) and 5 patients with alcoholic liver cirrhosis (14.71%). We have also correlate the arrhythmias with different biochemical variables from our cohort. In our study there were many association between hepatic cirrhosis and cardiac abnormalities, which is concordant to reports from literature. Compared to population without liver cirrhosis, the prevalence of arrhythmias was increased in our cohort.

Key words: liver cirrhosis, arrhythmias, rhythm disorders

Liver cirrhosisis a public health burden worldwide with a large variety of clinical manifestations and complications, some of those can be life-threatening [1].The term of cirrhosis can be described byhistological point of view like a diffuse liver process. These structural changes represent the results of fibrosis which has a prolonged evolution over months and years and which are converting the normal hepatic architecture into abnormal nodules [2].

Liver cirrhosis has been associated with a couple of cardiovascular complications including hemodynamic changes, hypertension and myocardial dysfunctions. All of these symptoms can develop a serious cirrhotic cardiomyopathy. The patients diagnosticated with liver cirrhosis could have various arrhythmias with both systolic and diastolic dysfunctions; they can also present chronotropic alteration and electromechanical changes [3].

In cirrhosis the cardiac dysfunction remains frequently ignored. Liver cirrhosis is correlated with a group of cardiovascular abnormalities, which include hyper dynamic circulation, portal hypertension, hepatopulmonary syndrome and abnormal features in different vascular territories like renal and cerebral vasculature [4].

Peripheral vasodilatation secondary to a reduce cardiac *after load* could avert any clinical sign of cardiac dysfunction, but there are many studies which demonstrate that the ventricular systolic function could give a defective response under a physiological or pharmacological stress [5].

Cirrhosis is related to an increased cardiac output and heart rate, also to a reduced systemic vascular resistance and blood pressure. An important role is given to an impaired autonomic activity and splachnic arterial vasodilatation[6].

Cirrhotic cardiomyopathy is a pathological condition conceded in cirrhosis [7]. This condition is characterized by a blunted contractile response to stress and an altered diastolic relaxation with electrophysiological abnormalities, like prolongation of the QT interval [8,9]. These changes were before considerated to be related to alcoholic liver cirrhosis, but latter studies demonstrate that these cardiac abnormalities are noticed in patients with nonalcoholic cirrhosis [7].

Experimental part

Material and methods

The study, was carried on 126 patients admitted to the County Hospital of Craiova, CardiologyDepartment, between January 2017 and January 2018. The main criteria in our study was the certain of liver cirrhosis, which was based on the clinical history and examination, biochemical and serologic findings, including ultrasonography and Fibroscan. We considered patients with viral etiology, with B and C virus and with alcoholic liver cirrhosis. The exclusion criteria were patients with known primary cardiac pathology like: congenital long QT syndrome, ischemic heart disease, congenital heart disease.

Multiple variable were evaluated including demographics and clinical and biochemical characteristics, frequency of arrhythmias and evaluation of the associated factors:diabetes mellitus, hypertension, hypercholesterolemia, hypertriglyceridemia, hyper/ hypokalemia, hyper/hyponatremia.

Results and discussions

We analyzed our cohort of 126 patients with liver cirrhosis, female/men=41/85.

Table 1DISTRIBUTION OF THEPATIENTS ACCORDING TOGENDER		'n	Table2 DISTRIBUTION OF THE PATIENTS ACCORDING TO ENVIRONMENTAL AREA			
	Gender Total			MEDIU	Total	
Women 43			RURAL	53		
	Men 83			KORAL		

URBAN

Grand Total

	Total	126	
G	roup of age	Тс	otal
<(60 years old	29)

52

45

126

60-69 years old

>70 years old

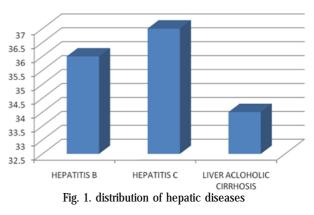
Total

 Table 3

 DISTRIBUTION OF THE PATIENTS

73

126


BY AGE

The distribution of the patients by environmental are reveal a number of 49 patients from rural areas and 77 patients from urban areas.

We classified our patients in 3 groups of age. We had 29 patients under 60 years old, 52 patients with age between 60 and 69 years old and 45 patients with age above 70 years.

From our group, after exclusion criteria, we have a total of 34 patients with alcoholic liver cirrhosis, 37 patients with chronic HCV infection and 36 patients with HBV infection.

From 34 patients with alcoholic liver cirrhosis, 23 patients presented atrial fibrillation (67.65%), from 37 patients with

chronic HCV infection 21 were diagnosed with atrial fibrillation(56.76%) and from the patients with HBV infection 19 patients were known with atrial fibrillation(52.78%) (tables 4,5).

We have encounter atrial flutter at 2 patients (5.56%) with chronic HBV infection. None of the patients with chronic HCV infection or alcoholic liver cirrhosis presented with atrial flutter (tables 6,7).

From the patients diagnosticated with atrial tachycardia we found 3 patients with chronic HBV infection (8.33%), at 4 patients with chronic HCV infection(10.81%) and at 2 patients with alcoholic liver cirrhosis(5.88%) (tables 8,9).

Bradycardia was met at 4 patients with chronic HBV infection(11.11%), 3 patients with alcoholic liver cirrhosis(8.82%) and 3 patients with HCV(8.11%) (tables 10,11).

Atrial extrasystole was found at 7 patients with chronic HBV infection (19.44%), 4 patients with chronic HCV infection (10.81%) and 1 patients with alcoholic liver cirrhosis (2.94%) (tables 12,13).

Ventricular extrasystole was found at 12 patients with chronic HBV infection (33.33%), 3 patients with chronic HCV infection (8.11%) and 5 patients with alcoholic liver cirrhosis (14.71%) (tables 14,15).

We also try to correlate the arrhythmias with different biochemical variables from our cohort.

So, 22 patients of our patients with atrial fibrillation had hyperkalemia (StdDev 0.71) and 3 hypokalemia, from the patients with bradycardia 3 of them presented hyperkalemia(StdDev 0.71) and one patient with atrial tachycardia presented hyperkalemia (StdDev 0.58) (tables 16-18).

One of the patient with atrial fibrillation presented hypernatremia and 31 presented hyponatremia (table 19).

Two patients with bradycardia presented hypernatremia and 3 patients presented hyponatremia. Also from the patients with atrial tachycardia two of them presented hyponatremia.

Hypercholesterolemia was found at nine patients with atrial fibrillation (StdDev 48.41), at 5 patients with bradycardia(StdDev 62.92) and at 2 patients with atrial tachycardia (StdDev 54.67) (tables 20-23).

Hypertriglyceridemia was found at 15 patients with atrial fibrillation(StdDev 52.86), at 5 patients with bradycardia(StdDev 76.60) and at 2 patients with atrial tachycardia (StdDev 45.62) (tables 24-29).

From the patients with atrial fibrillation we found 26 with diabetes mellitus and 46 with hypertension. Also, from the patients with bradycardia we found 2 patients with diabetes mellitus and 9 patients with hypertension. From the patients with tachycardia, 3 of them had diabetes mellitus and 11 had hypertension (tables 30-33).

Liver cirrhosis is detected all over the world and is responsible for a huge morbidity and mortality all over the

HEPATITIS	FIBRILATION	NO FIBRILATION	Total
NON HEPATITIS	11	8	19
HEPATITIS B	19	17	36
HEPATITIS C	21	16	37
ALCOHOLIC LIVER CIRRHOSIS	23	11	34
Total	74	52	126
	NC)	

HEPATITIS	FIBRILATION	FIBRILATION	Total
	57.89%	42.11%	100.00%
HEPATITIS B	52.78%	47.22%	100.00%
HEPATITIS C	56.76%	43.24%	100.00%
LIVER ALCOHOLIC			
CIRRHOSIS	67.65%	32.35%	100.00%
Total	58.73%	41.27%	100.00%

Tables 4, 5 CORRELATIONS BETWEEN HEPATIC DIAGNOSIS AND ATRIAL FIBRILLATION

 Tables 6, 7

 CORRELATION BETWEEN HEPATIC DISORDERS AND ATRIAL FLUTTER

HEPATITIS	ATRIAL FLUTTER	NO ATRIAL FLUTTER	Total
NO HEPATITIS	2	17	19
HEPATITIS B	2	34	36
HEPATITIS C	0	37	37
ALCOHOLIC LIVER CIRRHOSIS	0	34	34
Grand Total	4	122	126

HEPATITIS	ATRIAL FLUTTER	NO ATRIAL FLUTTER
NO HEPATITIS	10.53%	89.47%
HEPATITIS B	5.56%	94.44%
HEPATITIS C	0.00%	100.00%
ALCOHOLIC LIVER		
CIRRHOSIS	0.00%	100.00%
Total	3.17%	96.83%

	ATRIAL TACHYCARDIA	NO ATRIAL TACHYCARDIA	
HEPATITIS			Total
NO HEPATITIS	4	15	19
HEPATITIS B	3	33	36
HEPATITIS C	4	33	37
ALCOHOLIC LIVER			
CIRRHOSIS	2	32	34
Grand Total	13	113	126

HEPATITIS	ATRIAL TACHYCARDIA	NO ATRIAL TACHYCARDIA
NO HEPATITIS	21.05%	78.95%
HEPATITIS B	8.33%	91.67%
HEPATITIS C	10.81%	89.19%
ALCOHOLIC	\$	
LIVER CIRRHOSIS	5.88%	94.12%
Grand Total	10.32%	89.68%

globe. It is characterized by a hyperdynamic circulation, which is related to a high cardiac output, reduced systemic vascular resistance and a global arterial vasodilatation. In many studies, liver cirrhosis was associated with an abnormal cardiac feature [10,11].

Cirrhotic cardiomyopathy is characterized by abnormal heart structure and function at patients with liver cirrhosis.

The leading etiological factors in Romania are the viral etiology: Hepatitis B and C, followed by alcohol and NALD [12]. Other significant causes include autoimmune hepatic diseases, toxins, drugs, hepatic venous outflow tract

 Tables 8,9

 CORRELATION BETWEEN HEPATIC DIAGNOSIS

 AND ATRIAL TACHYCARDIA

obstruction, heart failure, metabolic and genetic abnormalities.

In our study there were many association between hepatic cirrhosis and cardiac abnormalities, which is concordant to reports from literature [13, 14].

In patients with liver cirrhosis the prevalence of arrhythmic events increase with the progression of the liver disease and there are occurring independent of cirrhosis aetiology [15,16]. Despide of this, Baik et al described that sudden cardiac death is uncommon in cirrhosis. As a consequence the significance of QT prolongation in liver cirrhosis still need to be explored [17,18].

	SINUSAL BRADYCARDIA	NO SINUSAL BRADYCHARDIA	Total
HEPATITIS			
NO HEPATITIS	3	16	19
HEPATITIS B	4	32	36
HEPATITIS C	3	34	37
ALCOHOLIC LIVER			
CIRRHOSIS	3	31	34
Total	13	113	126

	SINUSAL BRADYCARDIA	NO SINUSAL BRADYCARDIA	Total
HEPATITIS			
NO HEPATITIS	15.79%	84.21%	100.00%
HEPATITIS B	11.11%	88.89%	100.00%
HEPATITIS C	8.11%	91.89%	100.00%
ALCOHOLIC			
LIVER CIRRHOSIS	8.82%	91.18%	100.00%
Total	10.32%	89.68%	100.00%

Tables 12,13

CORRELATION BETWEEN HEPATIC DISORDERS AND ATRIAL EXTRASYSTOLE

HEPATITIS	ESA	NO ESA	Total
NO HEPATITIS	2	17	19
HEPATITIS B	7	29	36
HEPATITIS C	4	33	37
ALCOHOL LIVER			
CIRRHOSIS	1	33	34
Total	14	112	126

HEPATITA	ESA	NO ESA	Total
NO HEPATITIS	10.53%	89.47%	100.00%
HEPATITIS B	19.44%	80.56%	100.00%
HEPATITIS C	10.81%	89.19%	100.00%
ALCOHOLIC LIVER			
CIRRHOSIS	2.94%	97.06%	100.00%
Total	11.11%	88.89%	100.00%

Tables 14,15 CORRELATION BETWEEN HEPATIC DISORDERS AND VENTRICULAR EXTRASYSTOLE

HEPATITIS	ESV	NO ESV	Total
NO HEPATITIS	2	17	19
HEPATITIS B	12	24	36
HEPATITIS C	3	34	37
ALCOHOLIC LIVER			
CIRRHOSIS	5	29	34
Total	22	104	126

HEPATITIS	ESV	NO ESV	Total
NO HEPATITIS	10.53%	89.47%	100.00%
HEPATITIS B	33.33%	66.67%	100.00%
HEPATITIS C	8.11%	91.89%	100.00%
ALCOHOLIC LIVER			
CIRRHOSIS	14.71%	85.29%	100.00%
Total	17.46%	82.54%	100.00%

Tables 16 ,17,18

CORRELATIONS BETWEEN ATRIAL FIBRILLATION AND HIPER/ HIPOKALEMIA

ATRIAL FIBRILLATION	HIPERKALEMIA	HIPOKALEMIA	NORMAL	Total
YES	22	3	49	74
NO	6	2	44	52
Total	28	5	93	126

verage of K+	
ATRIAL FIBRILLATION	Total
YES	4.70
NO	4.38
Total	4.566984127

ATRIAL FIBRILATION	HIPERNATREMIA	HIPONATREMIA	NORMAL	Total
YES	1	31	42	74
NO	5	11	36	52
Total	6	42	78	126

Table 19CORRELATIONS BETWEEN ATRIALFIBRILATION AND HIPER/HIPONATREMIA

Tables 10,11CORRELATION BETWEEN HEPATIC DISORDERS AND
SINUSAL BRADYCARDIA

Tables 20,21,22 CORRELATIONS BETWEEN ATRIAL FIBRILLATION AND CHOLESTEROL LEVEL

ATRIAL FIBRILLATION	Hyperchole	esterolemia	No-Hypercholesterole	emia	Tota
YES		9		65	7
NO		19		33	5
Total		28		98	12
ATRIAL FIBRILLATIO	N Total		ATRIAL FIBRILATION	Total	
YES	74.00		YES		7.34
NO	52.00		NO	17	5.77
Total	126		Total	159.0714	1286

FLUTTER, TAHI, BRADI	YES	NO	Total
SINUSAL BRADYCARDIA	5	8	13
ATRIAL FLUTTER	0	4	4
ATRIAL TACHYCARDIA	2	11	13
NONE	21	75	96
Total	28	98	126

Table 23CORRELATIONS BETWEEN SINUSAL BRADYCARDIA, ATRIALFLUTTER, ATRIAL TACHYCARDIA AND CHOLESTEROL LEVEL

Tables 24, 25,26				
CORRELATIONS BETWEEN ATRIAL	FIBRILLATION AND TRIGLICERIDES LEVEL			

ATRIAL FIBRILATION	Hypertriglyceridemi	a No Hypertriglyceridemia	Total
YES	15	59	74
NO	15	37	52
Total	30	96	126

StdDev of TRYGLYCERIDE	
ATRIAL FIBRILLATION	Total
YES	52.86
NO	53.67
Total	53.740113

Average of TRYGLYCERIDE	
ATRIAL FIBRILLATION	Total
YES	100.38
NO	118.54
Total	107.873016

Table 27, 28, 29

CORRELATIONS BETWEEN SINUSAL BRADYCARDIA, ATRIAL FLUTTER, ATRIAL TACHYCARDIA AND TRYGLICERIDES LEVEL

Diagnosis	HIPERTRYGLYCERI	DEMIA NO HIPERTRYGL	YCERIDEMIA Total
SINUSAL BRADYCARDIA	5	8	13
ATRIAL FLUTTER		4	4
ATRIAL TACHYCARDIA	2	11	13
NONE	23	73	96
Total	30	96	126

agnosis	Total	StdDev of TRYGLYCERIDE	E	
INUSAL BRADYCARDIA	125.62	Diagnosis	Total	
ATRIAL FLUTTER	113.75	SINUSAL BRADYCARDIA	76.60	
ATRIALTACHYCARDIA	115.31	ATRIAL FLUTTER	50.94	
NONE	104.22	ATRIAL TACHYCARDIA	45.62	
Total	107.873016	NONE	51.46	
		Total	53.740113	

Other causes known to induce abnormal cardiac and hepatic feature are oxidative stress, inflammation and insulin resistance [19].

ATRIAL FIBRILATION	DIABETES MELLITUS	NO DIABETES	Total
YES	26	48	74
NO	13	39	52
Total	39	87	126
			Т

FLUTTER, TAHI, BRADI	DIABETES MELLITUS	NO DIABETES	Total
SINUSAL BRADYCARDIA	2	11	13
ATRIAL FLUTTER		4	4
ATRIAL TACHYCARDIA	3	10	13
NONE	34	62	96
Total	39	87	126

Table 30,31CORRELATIONS BETWEEN ATRIALFIBRILLATION AND DIABETES MELLITUS

ATRIAL FIBRILATION	HIPERTE	NSION	NO HIPERTE	INSION	Total
YES	46		28		74
NO	45		7		52
Total	91		35		126

FLUTTER, TAHI, BRADI	HIPERTENSION	NO HTA	Total
SINUSAL			
BRADYCARDIA	9	4	13
ATRIAL FLUTTER	3	1	4
ATRIAL TACHYCARDIA	11	2	13
NONE	68	28	96
Total	91	35	126

Arrhythmic events occur frequent at patients with liver cirrhosis [20] and the risk of developing heart failure increases [21].

Conclusions

The arrhythmias represent a significant factor for the evolution and the prognosis of the patients with hepatic cirrhosis. In order to avoid the complication or to threat both cardiovascular and hepatic disorders, we have to perform a complex and a permanently cardiovascular evaluation of the patients with liver cirrhosis.

References

1. ANTHONY S, FAUSI H. Harrison principles of internal medicine, Clifford lane $19^{\rm th}{\rm edition, chapter}$ 365.2059.

2.AURSULESEI V, VASINCU D, TIMOFTE D, et al. New mechanism of vesicles migrations.Gen.Physion.Biophys.2016;35:287-298.

3.COZMA, L.C.D., GHICIUC, C.M, MITU, F, DASCALU, C.G., Rev Chim. (Bucharest), **68**, no.2, 2018, p.525

4.BERNARDI M, RUBBOLI A, TREVISANI F, ET AL. (Reduced cardiovascular responsiveness to exercise-induced sympathoadrenergic stimulation in patients with cirrhosis. Hepatology. 1991;12:207-21.

5.GROSE RD, NOLEM J, DILLOW JF.Exercise induced left ventricular dysfunction in alcoholic and non-alcoholic cirrhosis. J Hepatol. 1995;22:326–332.

6.IWAO T, OHO K, SAKAI T ET AL. splanchnic and extra splanchnic arterial haemodynamics in patients with cirrhosis. J. Hepatol. 1997; 27:817.

7.FLORENCE WONG (2009): Cirrhotic cardiomyopathy.HepatolInt.; 3:294-304.

8.ZAMBRUNI A, TREVISANI F, CARACENI P, BERNARDI M. (2006): Cardiac electrophysiological abnormalities in patients with cirrhosis. J Hepatol.;44:994-1002.

9.MIHAILOVICI A R , DELIU R, MARGARITESCU C, SIMIONESCU C E, DONOIU I, ISTRATOAIE O, TUDORASCU D R, TARTEA E-A, GHEONEA D I,Collagen I and III,MMP-1 and TIMP-1 immunoexpression in dilated cardiomyopathy, Romanian Journal of Morphology and embryology, 2017,vol.58(3),P. 777-781.

Table 32,33CORRELATIONS BETWEEN SINUSALBRADYCARDIA, ATRIAL FLUTTER,ATRIAL TACHYCARDIA ANDHIPERTENSION

10.AL-HAMODI W.: Cardiovascular changes in cirrhosis: pathogenesis and clinical implications, Saudi J. Gastro-enterol., 16 (3): 145-153, 2011.

11.GIUSEPPE F., GRAZIELLA P., TANIA T., LUISA S. and FRANCESCO P.: Cardiovascular dysfunction in patients with liver cirrhosis. Annals of Gastroenterology, 27: 1-10, 2014.

12. NC, JAIN D, VASDEV N, GULWANI H, SAIGAL S, SOIN A. Etiologic types of end-stage chronic liver disease in adults: analysis of prevalence and their temporal changes from a study on native liver explants. Eur J Gastroenterol Hepatol. 2012 Oct;24(10):1199-208.

13.JAUE DN, MA Z, LEE SS. Cardiac muscarinic receptor function in rats with cirrhotic cardiomyopathy. Hepatology 1997;25:1361-5. 14.COSTACHE IRINA IULIANA, MIFTODE EGIDIA, MITU OVIDIU,

14.COSTACHE IRINA IULIANA, MIFTODE EGIDIA, MITU OVIDIU, AURSULESEI VIVIANA, Sex differences in Cardiovascular Risk Factors in a Rural Community from North Romania Region, Revista de Cercetare si Interventie Sociala, vol.55,2016, 204-214.

15.DAY CP, JAMES OF, BUTLER TJ, CAMPBELL RW. QT prolongation and sudden cardiac death in patients with alcoholic liver disease. Lancet 1993;341:1423-1428.

16.LAZZERI C, LA VILLA G, LAFFI G, VECCHIARINO S, GAMBILONGHI F, GENTILINI P ET AL. Autonomic regulation of heart rate and QT interval in nonalcoholic cirrhosis with ascites. Digestion 1997;58:580-586.

17.BAIK SK, FOUAD TR, LEE SS. Cirrhotic cardiomyopathy. Orphanet J Rare Dis 2007;2:15.

18.IRINA IULIANA COSTACHE, EGIDIA MIFTODE, OVIDIU PETRIS, ALINA DELIA POPA, DAN IIESCU, EOSEFINA GINA BOTNARIU. Associations between Area of residence and Cardiovascular risk, Revista de Cercetare si Interventie Sociala, Vol. 49, 2015.

19.AURSULESEI, V., BULUGHIANA, S., STOICA B, A., ANISIE, E., Circulating Chemerin,Oxidative Stress, Inflammation and Insulin Resistance in Morbid Obesity, Rev. Chim.(Bucharest) ,**67**, no.5, 2017, p.1014

20.ZAREBA W, MOSS AJ, LE CESSIE S, LOCATI EH, ROBINSON JL, HALL WJ, ANDREWS ML. Risk of cardiac events in family members of patients with long QT syndrome. J Am Coll Cardiol 1995;26:1685-1691. 21. AL NAMAT, R., AURSULESEI ,V., FELEA M, G., COSTACHE, I.I., PETRIS, A., MITU, O., AL NAMAT, N., AL NAMAT, D., GHICIUC, C., LUPUSORU, C.E., TINICA, G., MITU, F., Rev. Chim. (Bucharest), **68**, no. 7, 2017, p.1488.